Modulated Autocorrelation Convolution Networks for Automatic Modulation Classification Based on Small Sample Set

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Sample Issues for Microarray-Based Classification

In order to study the molecular biological differences between normal and diseased tissues, it is desirable to perform classification among diseases and stages of disease using microarray-based gene-expression values. Owing to the limited number of microarrays typically used in these studies, serious issues arise with respect to the design, performance and analysis of classifiers based on micro...

متن کامل

Automatic recommendation of classification algorithms based on data set characteristics

Choosing appropriate classification algorithms for a given data set is very important and useful in practice but also is full of challenges. In this paper, a method of recommending classification algorithms is proposed. Firstly the feature vectors of data sets are extracted using a novel method and the performance of classification algorithms on the data sets is evaluated. Then the feature vect...

متن کامل

Rough Set-Based Approach for Automatic Emotion Classification of Music

Music emotion is an important component in the field of music information retrieval and computational musicology. This paper proposes an approach for automatic emotion classification, based on rough set (RS) theory. In the proposed approach, four different sets of music features are extracted, representing dynamics, rhythm, spectral, and harmony. From the features, five different statistical pa...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Flip-Rotate-Pooling Convolution and Split Dropout on Convolution Neural Networks for Image Classification

This paper presents a new version of Dropout called Split Dropout (sDropout) and rotational convolution techniques to improve CNNs’ performance on image classification. The widely used standard Dropout has advantage of preventing deep neural networks from overfitting by randomly dropping units during training. Our sDropout randomly splits the data into two subsets and keeps both rather than dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2971586